Abstract. Let \((M, g)\) be a simply connected complete Kähler manifold with nonpositive sectional curvature. Assume that \(g\) has constant negative holomorphic sectional curvature outside a compact set. We prove that \(M\) is then biholomorphic to the unit ball in \(\mathbb{C}^n\), where \(\dim_{\mathbb{C}} M = n\).

Résumé. Soit \((M, g)\) une variété kählérienne complète et simplement connexe à courbure sectionelle non-positive. Supposons que \(g\) ait courbure sectionnelle holomorphe constante et négative en delors d’un compact. On démontre que \(M\) est biholomorphe à une boule dans \(\mathbb{C}^n\), où \(\dim_{\mathbb{C}} M = n\).

1. Introduction

An important issue in complex differential geometry is to understand the relationship between the curvature of a Kähler manifold and the underlying complex structure. The simplest theorem along these lines is the classical theorem of Cartan that a simply connected complete Kähler of constant holomorphic sectional curvature is holomorphically isometric to \(\mathbb{C}P^n\), \(\mathbb{B}^n\) or \(\mathbb{C}^n\) (where \(\mathbb{B}^n\) is the open unit ball in \(\mathbb{C}^n\)) depending on whether the curvature is positive, negative or zero. Here the metrics on \(\mathbb{C}P^n\), \(\mathbb{B}^n\) or \(\mathbb{C}^n\) are the Fubini-Study metric, the Bergman metric and the flat metric, respectively.

A far deeper theorem is that of Siu and Yau [7] which states that a complete simply connected nonpositively curved Kähler manifold of faster than quadratic curvature decay has to be biholomorphic to \(\mathbb{C}^n\). An analogue of this theorem for characterizing the ball in \(\mathbb{C}^n\) is not known, to the best of our knowledge. As a first step in this direction we prove the following theorem, which can also be regarded as a perturbed version of Cartan’s theorem stated above, at least in the negative case.

Theorem 1.1. Let \((M, g)\) be a simply connected complete Kähler manifold with nonpositive sectional curvature. If \(g\) has constant negative holomorphic sectional curvature outside a compact set, \(M\) is biholomorphic to the unit ball in \(\mathbb{C}^n\), where \(\dim_{\mathbb{C}} M = n\).

It is natural to ask if the theorem is true if we only have that the holomorphic sectional curvatures converge to \(-1\) as \(r \to \infty\), where \(r\) is the distance from a fixed point in \(M\). However, the following class of examples show that the theorem then fails: If \(g\) is the Bergman metric of a strongly pseudoconvex domain \(\Omega\) in \(\mathbb{C}^n\), then the holomorphic sectional curvatures of \(g\) approach \(-1\) as one approaches \(\partial\Omega\). Moreover, by the results of [5], if \(\Omega\) is a small enough perturbation of \(\mathbb{B}^n\), i.e., \(\partial M\) is a \(C^\infty\) small perturbation of \(\partial \mathbb{B}^n\), then \(g\) has negative sectional curvature. By Chern-Moser theory, “many” of these perturbations are not biholomorphic to \(\mathbb{B}^n\). Hence one should impose a specified rate of convergence of holomorphic sectional curvatures.
curvatures to -1 in order to obtain a theorem similar to that of Siu-Yau in the negative case. However, it is not clear what this rate of convergence should be.

Finally, we note that the hypotheses of the Siu-Yau theorem are strong enough to guarantee that the Kähler manifold is actually holomorphically isometric to \mathbb{C}^n with the flat metric. In fact, R. Greene and H. Wu proved that a Riemannian manifold with the same curvature hypotheses has to be flat [6]. In our case, however, we can always perturb the Bergman metric of B^n on a compact set and satisfy our hypotheses.

Roughly, the proof of Theorem 1.1 proceeds as follows: Suppose that M has constant holomorphic curvature outside a compact set K. As in the proof of Cartan’s theorem, one can use the exponential map to construct holomorphic maps to B^n on “pieces” of $M \setminus K$. The difficulty here is that even though these maps can be chosen to patch up to a give single holomorphic map from $M \setminus K$ to B^n, this map may not be injective. We avoid this difficulty by working with ∂M, the asymptotic boundary of M. More precisely, we use the holomorphic maps above to define a spherical CR-structure on ∂M. Since ∂M is simply connected, one gets a global CR-diffeomorphism to S^{2n-1}. One then notes that since M is Stein, we can extend this diffeomorphism to M by Hartogs’ theorem.

2. Proof

For the rest of this paper, M will denote a simply-connected, complete Kähler manifold with nonpositive sectional curvature and constant holomorphic sectional curvature -1 outside a compact set. ∂M will denote its asymptotic boundary. There is a natural topology, described in the proof below, on $\overline{M} := M \cup \partial M$ which makes it a compact topological manifold-with-boundary.

The main theorem is proved by first proving the following proposition. In what follows S^{2n-1} is the unit sphere in \mathbb{C}^n with the induced CR-structure.

Lemma 2.1. \overline{M} can be given the structure of a smooth compact manifold-with-boundary such that ∂M admits a “natural” CR-structure which makes it CR-diffeomorphic to S^{2n-1}.

Before beginning the proof, we recall certain general constructions on nonpositively curved manifolds:

First, we define the “modified” exponential map. Let V be a complex vector space with a Hermitian inner product h and let $B = \{ x \in V : \|x\| < 1 \}$ denote the open unit ball in V. Define the homeomorphism $\phi : V \rightarrow B$ by $\phi(x) = (1 - e^{-\|x\|^2})^{\frac{x}{\|x\|^2}}$. Note that ϕ is a diffeomorphism on $V \setminus \{0\}$. When $V = T_pM$ and $h = g_p$, we will use the notation ϕ_p. For any $p \in M$, define the modified exponential map $\tilde{\exp}_p : B_p \rightarrow M$ by $\tilde{\exp}_p(x) = \exp_p \circ \phi_p^{-1}$.

Next, let $\partial M = \{ \text{equivalence classes of geodesic rays in } M \}$, where geodesics $c_1, c_2 : [0, \infty) \rightarrow M$ are equivalent if there is a constant $a < \infty$ such that $d(c_1(t), c_2(t)) < a$ for all $t \geq 0$. ∂M is usually referred to as the asymptotic boundary of M. We endow $\overline{M} = M \cup \partial M$ with the “cone” topology. This is the topology generated by open sets in M and “cones”, corresponding to $x \in M$, $z \in \partial M$ and $\varepsilon > 0$, defined by

$$C_x(z, \varepsilon) := \{ y \in \overline{M} : y \neq x \text{ and } <_x (z, y) < \varepsilon \}.$$
Here the angle $\angle_x (z, y) := \angle (c'_1(0), c'_2(0))$ where c_1 and c_2 are geodesics joining x with z and y (see [1] for details). For any $p \in M$, \exp_p extends to a homeomorphism, which we continue to denote by the same symbol, from \overline{B}_p to \overline{M}.

Now we come to the proof of Lemma 2.1.

Proof. Suppose M has constant holomorphic curvature -1 outside a compact set K. Fix $o \in M$. Choose R large so that $d(o, x) < R$ for any $x \in K$.

If $p \in \partial M$, then there is an unit-speed geodesic $\gamma_p : [0, \infty) \to \overline{M}$ with $\gamma_p(0) = o$ and $\lim_{t \to -\infty} \gamma_p(t) = p$. Let

$$x(p) := \gamma_p(R).$$

We observe that $C_{\pi/2}(p, \pi/4) \cap K = \emptyset$. This is because $d(o, x) > R$ for any $x \in C_{\pi/2}(p, \pi/4)$ by Toponogov’s Comparison Theorem for geodesic triangles in nonpositively curved manifolds (see [1], Page 5). Hence, by our choice of R, g has constant holomorphic sectional curvature in the interior of $C_{\pi/2}(p, \pi/4)$.

Choose $p_1, \ldots, p_k \in \partial M$ so that if

$$U_i := C_{\pi/4}(p_i, \pi/4),$$

then $U_1 \cap \partial M, \ldots, U_k \cap \partial M$ cover ∂M.

For $i = 1, \ldots, k$, choose linear isometries $L_i : T_{\gamma_{p_i}(R)} \to T_0 \mathbb{B}^n$. We then get maps

$$f_i := \exp_{x(p_i)} \circ L_i \circ \exp_{x(p_i)}^{-1} : U_i \to \mathbb{B}^n.$$

These maps are homeomorphisms onto their images and we declare these to be charts on $\partial M \subset \overline{M}$. In order to check that the transition functions are smooth, let us observe the following:

First, it is easily checked that $f_i|_{U_i} = \exp_0 \circ L_i \circ \exp_{p_i}^{-1}$. Recall that our metric is locally symmetric in the interior of U_i. Hence by the Cartan-Ambrose-Hicks Theorem (cf. [4]), f_i is a holomorphic local isometry there.

Next, by Toponogov’s Comparison Theorem implies that for any $p \in \partial M$, U_p is geodesically convex. Also, it is clear from the definition that if $q \in U_p$, then the geodesic ray starting at $x(p)$ and passing through q lies in U_q. Combining these observations, we see that if $U_i \cap U_j \neq \emptyset$, then

$$U_i \cap U_j$$

is connected and $U_i \cap U_j \cap \partial M \neq \emptyset$.

Now the transition function $f_j \circ f_i^{-1}$ is a holomorphic isometry (for the restriction of the Bergman metric of \mathbb{B}^n) from $f_j(U_i \cap U_j) \cap \mathbb{B}^n$ to $f_i(U_i \cap U_j) \cap \mathbb{B}^n$. Since $f_j(U_i \cap U_j)$ is connected by (2.1), such a mapping has to be the restriction of a global automorphism of \mathbb{B}^n. In particular, the mapping is smooth up to the boundary, i.e. $f_i \circ f_j^{-1} : f_j(U_i \cap U_j) \to f_i(U_i \cap U_j)$ is smooth. This gives us the required smooth structure on \overline{M}.

Also, it is clear that the charts $(U_i \cap \partial M, f_i)$ define a CR-structure on ∂M, since the transition functions will be local CR-diffeomorphisms of S^{2n-1}. Moreover, by definition this CR-structure is locally spherical. Since ∂M is compact and simply connected, the results of [2] (basically a developing map argument) imply that there is a global diffeomorphism ψ from ∂M to S^{2n-1}. This proves the lemma. □
We continue with the proof of the main theorem, using the notation in the proof of the lemma. Let us note that by composing with holomorphic automorphisms of \mathbb{B}^n, if necessary, we can assume that

$$f_i|_{U_i \cap \partial M} = \psi.$$

By (2.1), (2.2) and unique continuation, if $U_i \cap U_j \neq \emptyset$ then $f_i \circ f_j^{-1} = \text{id} : f_j(U_i \cap U_j) \to f_i(U_i \cap U_j)$, since $f_i \circ f_j^{-1} = \text{id}$ on $f_j(U_i \cap U_j) \cap \partial \mathbb{B}^n$.

Hence if $U_i \cap U_j \neq \emptyset$, then $f_i = f_j$ on $U_i \cap U_j$. Therefore, the f_i patch up to give a smooth mapping $F : U \to \mathbb{B}^n$ on the open neighbourhood $U = U_1 \cup \ldots \cup U_k$ of ∂M and F is holomorphic on $U \cap M$. Since $F|_{\partial M} = \psi$ is injective and since F is a local diffeomorphism, we can choose a neighbourhood $V \subset U$ of ∂M such that $F|_{V}$ is injective.

To extend F to M, we recall Wu's theorem [8] that a simply connected complete Kähler manifold of nonpositive sectional curvature is Stein. Combining this with the fact that $M \setminus U$ is compact, we conclude that F extends to all of M by Hartogs' theorem on Stein manifolds. By the maximum principle, $F(M) \subset \mathbb{B}^n$.

To construct the inverse of F, let $G = F|_V^{-1}$. G is smooth map defined on the neighbourhood $F(V)$ of $\partial \mathbb{B}^n$, which is holomorphic in $F(V) \cap \mathbb{B}^n$. Since M is Stein, M is an embedded submanifold of some \mathbb{C}^N. Again by Hartogs theorem and the maximum principle, $G : F(V) \cap \mathbb{B}^n \to V \subset \mathbb{C}^N$ extends to a smooth map $G : \mathbb{B}^n \to M$ which is holomorphic in \mathbb{B}^n.

Finally, by unique continuation, $F \circ G = id_{\mathbb{B}^n}$ and $G \circ F = id_{\mathbb{B}^n}$ Q.E.D.

Remark: A CR-structure on the boundary of a nonpositively curved Kähler manifold is shown to exist under hypotheses more general than ours in [3].

We end with the following

Question: Let (M^n, g) be a simply-connected complete Kähler manifold of nonpositive curvature. If g is locally symmetric outside a compact set, is M biholomorphic to $\Omega \times \mathbb{C}^{n-k}$, where Ω is a bounded symmetric domain in \mathbb{C}^k, for some k?

References

department of mathematics, Indian Institute of Science, Bangalore 560012, India
E-mail address: harish@math.iisc.ernet.in

department of mathematics, Indian Institute of Science, Bangalore 560012, India
E-mail address: harish@math.iisc.ernet.in