Low Complexity Pilot Decontamination via Blind Signal Subspace Estimation

L. Cottatellucci
laura.cottatellucci@eurecom.fr

joint work with R. Müller, and M. Vehkaperä
I. Outline

Outline

1. Motivations
2. System Model
3. Subspace Approach
5. Performance Simulations
6. Conclusions
II. Motivations

MIMO Cellular Systems

Cooperative approach:

- Space division multiple access inside a cell
- Channel sharing among cells is spectral efficient but...
- ...interference management highly costly

\[
\begin{align*}
\text{Data sharing;} \\
\text{Channel state information acquisition;} \\
\text{Signalling.}
\end{align*}
\]
II. Motivations

A General System Model

\[y(m) = H x(m) + n(m) \]

- Multiuser CDMA;
- Multiuser SIMO;
- Single/Multiuser MIMO.
• At very low loads all detectors have equal performance.
• Matched filter: only knowledge of channel for user of interest needed.
• MMSE detector: statistical knowledge of all channel required.

At very low load matched filter optimally combats interference without coordination/cooperation.
II. Motivations

Massive MIMO Concept

- Huge antenna arrays \((R \gg 1 \text{ antennas}) \) at the base stations serving a few users \((T \ll R \text{ users}) \)
- Under assumption of perfect channel knowledge and \(T/R \to 0 \), beams can be made sharper and sharper and interference vanishes.

Interference management without coordination or cooperation!
II. Motivations

Pilot Contamination for TDD Systems

Simple scenario

- Users send orthogonal pilots within a cell, but the same training sequences are used in adjacent cells.
- By channel reciprocity, the channel estimates are useful for both uplink detection and downlink precoding.
II. Motivations

Pilot Contamination

Simple channel estimation (Marzetta '10)

- Linear channel estimation by decorrelator/matched filter is limited by copilot interference.
- Subsequent detection or precoding based on the low quality channel estimates degrade significantly the system spectral efficiency.
Proposed Countermeasures: State of Art

- Coordinated scheduling among cells.
- Coordinated training sequence assignment.

...but coordination very costly and complex in terms of signaling!
II. Motivations

A Deeper Look at the Impairment

• In the simple Marzetta’s scheme, array gain is utilized for data detection but not for channel estimation.

• Linear channel estimation does not exploit the array gain.

Guidelines for Countermeasures

• General channel estimation that utilizes the array gain.
System Model I

- L interfering cells
- T transmitters
- R receive antennas

$R \gg T$
$R \gg T(L+1)$
III. System Model

System Model II

Assumptions

- **Power control** such that in-cell users’ signals are received with equal power \(P \).
- **Handover** to guarantee that \(P > I \).
System Model for Channel Estimation

\[Y = HX + W \]

- \(C \): coherence time.
- \(Y \): \(R \times C \) matrix of received signals.
IV. Subspace Approach

Projection Subspace

\(\mathbf{Y} \mathbf{Y}^H \) is a matrix with \(T \) positive eigenvalues and \(R - T \) zero eigenvalues.

Let \(S \) be the \(R \times T \) matrix of eigenvectors corresponding to the nonzero eigenvalues:

- \(S \) spans the signal subspace;
- \(\mathbf{Y}' = \mathbf{S}^H \mathbf{Y} \) is the projection of the received signal into the signal space;
- We can estimate the equivalent channel in the \(T \) dimensional signal subspace \(S \) using \(\mathbf{Y}' \) without performance loss.
IV. Subspace Approach

Projection Subspace

In the presence of additive Gaussian noise and \(C \) sufficiently large

- The matrix \(S \) consisting of the \(YY^H \) eigenvectors corresponding to the \(T \) largest eigenvalues is still a basis of the signal subspace;

- By using the projection \(Y' = S^H Y \), the white noise impairing the observed signal is reduced from \(R\sigma^2 \) to \(T\sigma^2 \)

- In massive MIMO, since \(R \gg T \) and \(T/R \rightarrow 0 \) the noise is negligible compared to the signal power.
 - \(S \) spans the signal subspace;
 - \(Y' = S^H Y \) is the projection of the received signal into the signal space;
 - We can estimate the equivalent channel in the \(T \) dimensional signal subspace \(S \) using \(Y' \) without performance loss.

Fully blind method to obtain array gain!
Projection Subspace Method

✓ In the presence of additive Gaussian noise and intercell interference

− If $T/R \to 0$ and $P > I_k$ the signals of interest and the interferences are almost orthogonal.
− There will be two disjoint clusters of eigenvalues with the T highest eigenvalues associated to the signal of interest.

✓ The same projection method can be applied also in this case.

✓ Interference power subspace and white noise become negligible!

Pilot contamination is not a fundamental issue in massive MIMO!
How this method can be extended to practical systems with a finite number of receive antennas and finite coherence time?
Eigenvalue Spectrum of YY^H for Practical Systems

If the eigenvalue spectrum of YY^H consists of disjoint bulks associated to the interference and desired signals, the subspace method can still be applied and suppresses the most of interference and noise also when $T/R = \alpha > 0$ and $C/R = \kappa < +\infty$.

Fundamental to study the eigenvalue spectrum!

We approximate a system with finite T, R, C by a system with $T, R, C \rightarrow +\infty$ and $T/R \rightarrow \alpha$ and $R/C \rightarrow \kappa$.
Eigenvalue Distribution of Observation Signal Covariance

Solid red line: Asymptotic eigenvalue distribution by random matrix theory

\[\alpha = 1/100, \ \kappa = 10/3, \ r = 1/100, \ t = 4/100, \ T = 3, \ R = 300, \ C = 1000, \ P = 0.1, \ I = 0.025, \ W = 1 \]
V. Subspace Method in Practical Systems

Analysis of the Eigenvalue Bulk Gap

✓ Assume worst case with interferers received at the maximum power $I < P$.
✓ Let $\beta = I/P$.
✓ Approximate the eigenvalue distribution finite systems by asymptotic eigenvalue distribution.

Conservative condition for a nonzero gap btw interference and signal bulks

$$\frac{T}{C} \leq \frac{(1 - \beta)^2(L\beta^2 + 3(L + 1)\beta + 1 - 2(1 + \beta)\sqrt{3L\beta})}{(L\beta^2 - 1)(L\beta^2 + 6(L - 1)\beta - 1) + (9L^2 - 2L + 9)\beta^2}.$$

✓ Dependent only on the ratio T/C!
✓ Independent of R!
Separability Region

Region of separability for signal and interference subspaces

- L=2
- L=4
- L=7
Coherence Time vs Receive Antenna

- $T = 5,$
- $C = 100,$
- $L = 2,$
- $\frac{P}{W} = 0.1$ (SNR $= -10$ dB)
- $I_{\text{max}}/P = 0.5$

- C not required to scale with R for bulk separability.
- For a given C, an increase in R helps.
VI. Performance Assessment

Projection Subspace Method vs Linear Estimation

- $T = 5,$
- $C = 100,$
- $L = 6,$
- $P/W = 0.1$ (SNR $= -10$ dB)
- $I_k = \frac{kP}{\delta T}$
- $I_{\text{max}} = \frac{P}{\delta}$
- $\delta = 2, \ldots, 6$

Subspace projection method benefits from an increase of receive antennas R even for $R > C$.

L. Cottatellucci et al., Low Complexity Pilot Decontamination via Blind Signal Subspace Estimation © Eurecom January 2014
Conclusions

✓ An algorithm based on blind signal subspace estimation was proposed.

✓ Sufficient power margin is needed between desired signal and interference.

✓ Inter-cell interference is managed without coordination: only power control and power controlled hand-off are required.

✓ Low complexity detection/decoding working in the signal subspace.
✓ The algorithm works also at a very low coherence time.

✓ It benefits from an increase of R also with very low coherence time.

✓ Pilot decontamination is not a fundamental property of massive MIMO systems, but appears with linear estimation.

✓ The effects of $T, C, \text{ and } R$ on performance not completely understood.
Future Work

• Massive MIMO in TDD mode:
 – Refine the estimation of the projection subspace for real systems with non vanishing ratio $\frac{T}{R}$ in TDD;
 – Robust eigenvalue/vector separation also for edge-cell terminals;
 – Study of beamforming in downlink (beamforming in the projection subspace or in the original channel);

• Massive MIMO in FDD mode:
 – Exploitation of the correlation matrix reciprocity to extend previous results;

• Distributed massive MIMO:
 – Pathloss lowers diversity gain: what should be the density of distributed antenna to maintain massive MIMO advantages or how dense should a distributed antenna system be to be a “distributed massive MIMO” system?
 – How to perform robust eigenvalue/eigenvector separation?